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Network Nuclear Power Plant Model 

L1(u1(x), v2) = 0, v2 = G2(u2)

L2(v1, u2(x)) = 0, v1 = G1(u1)
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Low-fidelity Network Plant Model 



Finite Dimensional Coupled Network Systems 
•  Network system after discretization: 

 

•  Variety of solution methods 
–  Successive substitution (Picard, Gauss-Seidel) 
–  Newton’s method (Full, inexact, JFNK) 
–  Nonlinear elimination: 

 

v1 � g1(u1(v2)) = 0 s.t. f1(u1, v2) = 0

v2 � g2(u2(v1)) = 0 s.t. f2(v1, u2) = 0

f1(u1, v2) = 0, u1 2 Rn1 , v2 = g2(u2) 2 Rm2 , f1 : Rn1+m2 ! Rn1

f2(v1, u2) = 0, u2 2 Rn2 , v1 = g1(u1) 2 Rm1 , f2 : Rm1+n2 ! Rn2
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Polynomial Chaos Uncertainty  
Propagation Framework 

•  Steady-state spatially finite-dimensional stochastic problem: 

•  Polynomial chaos approximation: 

•  Orthogonal polynomial basis of total order at most N: 

•  Intrusive stochastic Galerkin (SG): 

•  Non-intrusive polynomial chaos (NIPC)/spectral projection (NISP): 
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f(û(x), x) i(x)⇢(x)dx = 0, i = 0, . . . , P

h i ji ⌘
Z

�
 i(x) j(x)⇢(x)dx = �ij, i, j = 0, . . . , P, P + 1 =

✓
N + s

s

◆

Find u(⇠) such that f(u, ⇠) = 0 a.e., ⇠ : ⌦ ! � ⇢ Rs, density ⇢

ui = hu(⇠) i(⇠)i ⇡
QX

k=0

wku
k i(⇠

k), f(uk, ⇠k) = 0, i = 0, . . . , P, k = 0, . . . , Q



Stochastic Coupled Network Systems 
•  Introduce random variables: 
 
 
•  Stochastic Galerkin network equations: 

•  Stochastic Galerkin residual equations evaluated via NISP approach: 

•  Results in SG analog of deterministic network system 
–  Allows similar nonlinear elimination approach 

 

⇠ = (⇠1, ⇠2), |⇠1| = s1, |⇠2| = s2, |⇠| = s = s1 + s2

h1(v1, v2, ⇠) = v1(⇠) � g1(u1(v2(⇠), ⇠1), ⇠1) = 0 s.t. f1(u1(⇠), v2(⇠), ⇠1) = 0

h2(v1, v2, ⇠) = v2(⇠) � g2(u2(v1(⇠), ⇠2), ⇠2) = 0 s.t. f2(v1(⇠), u2(⇠), ⇠2) = 0
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Curse of Dimensionality 

•  At each iteration of the nonlinear elimination method, we will have 
approximations to the coefficients 

•  Task is to then evaluate the coefficients 

•  where 

•  Requires solving sub-problems of larger stochastic dimensionality, e.g.,  
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The Key is Measure Transformation 

•  Use coupling terms to define new random variables 

–  Fewer basis terms in expansion 
–  Less work to compute unknown coefficients 

 
•  Must generate orthogonal polynomials & quadrature rules for new joint measure 

–  Components are dependent 
–  We don’t have the joint measure 

•  What we can compute is expectation through transformation of measure 

•  Can numerically approximate integrals with respect to unknown measure 
–  Compute inner products à generate new orthonormal bases via Gram-Schmidt 
–  Define quadrature rules for new basis that preserve discrete orthogonality 
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Constructing a Reduced Basis 
(Constantine et al, IJNME, 2014) 

•    
 
 
•    

•    

•    
 
 
•    

Construct a new basis {�k(⌘) : k = 0, . . . , P 0} with ⌘(⇠) = v̂(⇠) and P 0 < P
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Compute weighted QR factorization (e.g., weighted, modified Gram-Schmidt):

V = ZB s.t. ZTWZ = I, Z 2 R(Q+1)⇥(P 0+1), W = diag({wk}) 2 R(Q+1)⇥(Q+1)

Entries of Z are new basis functions evaluated at quadrature points:
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Constructing a Reduced Quadrature (1) 

•  Using measure transformation, original quadrature rule                                   
enables computing projections onto new basis. 

–  However this does not reduce computational work. 

•  Idea:  Find a new set of weights              with as many as zero as possible 
–  Drop quadrature points with zero weight to reduce cost 

•  Constraint:  Quadrature rule must preserve discrete orthogonality 

•  Define 
 
•  Constraint is equivalent to 

A 2 R(Q+1)⇥(P 0+1)2 s.t. Ajk = Zjk1Zjk2 , k = (k1, k2)
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AT w̃ = ATw, where w = [w0, . . . , wQ]T , w̃ = [w̃0, . . . , w̃Q]T .



Constructing a Reduced Quadrature (2) 

•  Elements of A are polynomials of degree at most 2N’, so A is rank deficient 
–  Find a full rank set of columns Y via (weighted) column-pivoted QR 

•  Compute new weights by solving 

•  By using the simplex method, obtain a solution     with exactly R nonzero 
weights 

–  Solve for weights by finding feasible point using any suitable linear program solver, 
e.g., Clp 

•  Resulting discrete orthogonality                      controlled by TOL. 

A⇧ = Y S, Y TWY = I, Find largest R such that |S(R,R)| > TOL
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Putting the Pieces Together 

•    

•    

•    
 
•    

Given a mapping h = h(⌘(⇠)), with ⌘(⇠) = v̂(⇠), we wish to compute
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Simple Composite Function Example 

Tensor-product Gauss-Legendre quadrature, QR tolerance = 10-12 

y1(x) = x1, y2(x) =

1

10 +

P4
i=1

xi

i

, h(y) = exp (y1 + y2) ,

QR tolerance = 10-6 
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Table I. Performance of the reduced basis and modified quadrature approaches with a tolerance of 10�12 on
the QR factorization of the linear program constraint.

N P + 1 Q+ 1 P

0
+ 1 R kĥ(10) � ĥ(N)k1 kĥ(10) � h̃(N)k1 kvec(I �ZTW̃Z)k1

1 5 16 3 5 2.93E-02 2.93E-02 2.22E-16
2 15 81 6 12 3.58E-03 3.58E-03 2.10E-14
3 35 256 10 22 3.55E-04 3.55E-04 1.46E-12
4 70 625 15 47 2.94E-05 2.94E-05 1.37E-12
5 126 1296 21 101 2.09E-06 2.09E-06 1.83E-12
6 210 2401 28 188 1.30E-07 1.30E-07 2.55E-12
7 330 4096 36 346 7.18E-09 7.18E-09 3.81E-12
8 495 6561 45 587 3.58E-10 3.57E-10 6.10E-12
9 715 10000 55 941 1.62E-11 1.63E-11 2.62E-12
10 1001 14641 66 1425 0.00E+00 1.63E-12 2.70E-12

Copyright c� 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme
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Table II. Performance of the reduced basis and modified quadrature approaches with a tolerance of 10�6 on
the QR factorization of the linear program constraint.

N P + 1 Q+ 1 P

0
+ 1 R kĥ(10) � ĥ(N)k1 kĥ(10) � h̃(N)k1 kvec(I �ZTW̃Z)k1

1 5 16 3 5 2.93E-02 2.93E-02 2.22E-16
2 15 81 6 12 3.58E-03 3.58E-03 2.10E-14
3 35 256 10 22 3.55E-04 3.55E-04 1.46E-12
4 70 625 15 35 2.94E-05 2.94E-05 1.90E-11
5 126 1296 21 50 2.09E-06 1.83E-06 2.28E-06
6 210 2401 28 70 1.30E-07 1.22E-07 4.02E-08
7 330 4096 36 92 7.18E-09 4.24E-07 1.11E-06
8 495 6561 45 158 3.58E-10 4.23E-06 1.12E-03
9 715 10000 55 252 1.62E-11 3.86E-06 4.87E-06
10 1001 14641 66 475 0.00E+00 1.30E-05 3.85E-02

Copyright c� 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme



Applying Dimension Reduction to Network 
Systems (1) 

•  Recall stochastic network system: 

 
•  And it’s stochastic Galerkin discretization: 

•  Stochastic Galerkin residual equations evaluated via NISP approximation for 
each component: 

•  Requires O(2*Q) internal solves 
 
 

h1(v1, v2, ⇠) = v1(⇠) � g1(u1(v2(⇠), ⇠1), ⇠1) = 0 s.t. f1(u1(⇠), v2(⇠), ⇠1) = 0
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Applying Dimension Reduction to Network 
Systems (2) 

•  At each step of nonlinear iteration, build reduced basis and quadrature for each 
component separately: 

 
•  Build PCE for each component using reduced random variables 

•  Project back to original PCE basis 
 
 
 

•  Similar procedure for derivatives needed by nonlinear elimination method 
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Application to Network-Coupled PDE Problem 

• Incompressible fluid flow/heat transfer in a coupled 
pipe-reactor with temperature source 
–  Implemented within Albany code (Salinger et al) 
– https://github.com/gahansen/Albany UQ FOR NETWORK MULTIPHYSICS SYSTEMS 15

Γ1

Reactor

Pipe

Γ1

Γ2

Γ2

Figure 3. Pipe and reactor geometries. Fluid flows from the pipe into the reactor across Γ1 and out of the
reactor into the pipe across Γ2.

it becomes necessary to propagate uncertainties in each component (such as the core) separately,
making assumptions on how these uncertainties interact with the rest of the system. However by
using the basis and quadrature reduction techniques detailed above, we can make the computational
cost of expensive components in the model (again, such as the core) effectively independent of
the number of independent sources of uncertainty arising from other components in the model. To
demonstrate this, we consider a model consisting of two coupled thermal-hydraulics components:
a 1× 0.1 in/out-flow pipe and a 1× 1 reactor vessel. Fluid flows in to the reactor from the pipe, is
heated, and flows out of the reactor back into the pipe where it is cooled. The computational domain
is shown in Figure 3. We include a temperature source in the reactor (to represent heating of the fluid
from fission) and cool the upper and lower walls of the pipe by holding them at a fixed temperature
(which conceptualizes the rest of the thermal-hydraulics of the plant). In each component we solve
the coupled steady-state Navier Stokes and energy equations,

−ν∆u+ u ·∇u+∇p =β(T − Tref)g,

−κ∆T + u ·∇T + Ts =0,
(47)

where ν is the kinematic viscosity, ρ is the density, β is the coefficient of thermal expansion, g is
the gravity vector, κ is the thermal diffusivity and Ts is the heat source. We let Γ1 and Γ2 denote the
respective interfaces between the inflow of the pipe to the reactor, and the outflow of the reactor to
the pipe. We use uP and uR to denote the fluid velocities in the pipe and reactor, respectively. We
use similar subscript notation for the pressure and temperature fields. Apart from the interfaces Γ1

and Γ2, the fluid velocity and temperature are fixed at all boundaries to zero.
The fluid variables are coupled through the following interface conditions,

{

uP = uR, x ∈ Γ1,

(ν∇uP − pP I)n1 = (ν∇uR − pRI)n1, x ∈ Γ1,
(48)

and
{

uR = uP , x ∈ Γ2,

(ν∇uR − pRI)n2 = (ν∇uP − pP I)n2, x ∈ Γ2,
(49)

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme
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)
, x 2 ⌦P [ ⌦R,

T̄P = T̄R

rT̄P · n1 = rT̄R · n1

)
, x 2 �1,

T̄R = T̄P

rT̄R · n2 = rT̄P · n2

)
, x 2 �2.



Discrete 2x2 Network Coupled System 

•  PDEs discretized via 1st order, stabilized FEM 
–  SUPG, PSPG stabilization 
–  Pipe:  40x4 cells, reactor 40x40 cells 

•  Pipe thermal diffusivity uncertain random field with exponential covariance 
–  Discretized with KL-expansion in s terms 

•  2x2 network coupled system 
–  Neumann-to-Dirichlet maps 

Cov
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Stochastic Network System 
•  Outer network system 

–  Stokhos instrusive stochastic Galerkin package (part of Trilinos) 
–  Standard Newton iteration 
–  GMRES linear solver, approximate Gauss-Seidel stochastic preconditioner, LU factorization of mean matrix 

•  Inner PDE solves 
–  Non-intrusive polynomial chaos at supplied quadrature points (tensor-product Gauss-Legendre) 
–  Standard Newton iteration for each sample 
–  GMRES linear solver, incomplete ILU preconditioner 
–  Distributed memory parallelism (MPI), 8 processors 

Coefficient of variation = 0.5, s = 3 random variables 

Mean Std. Dev. 

http://trilinos.sandia.gov  
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Table IV. Performance comparison of stochastic Galerkin applied to the pipe-reactor network system (54)
using the traditional and reduced basis/quadrature approaches.

Time (sec) Reduced Time(sec)

s P + 1 Q+ 1 P ′ + 1 R Pipe Reactor Total Pipe Reactor Total

2 10 16 10 16 4 62 67 4 53 58
3 20 64 10 40 17 246 263 17 120 137
4 35 256 10 41 82 1052 1134 73 129 202
5 56 1024 10 35 353 4051 4405 341 116 458

with coefficient of variation of 0.5 and s = 3 random variables. The reactor has a temperature source
Ts = 500, Reynolds number Re = 100 and mean Rayleigh number Ra ≈ 0.87.

We then apply the basis reduction and quadrature methods described in Section 3 to the reactor
component only. Table IV compares the resulting total run time for the complete stochastic Galerkin,
nonlinear elimination network calculation between both approaches for an increasing number of
random variables in the pipe. One can see that for the reduced basis and quadrature approach,
the size of the polynomial basis, modified quadrature, and resulting solution time for the reactor
component is roughly constant, even though the total number of random variables appearing in the
coupled system is increasing.

5. SUMMARY & CONCLUSIONS

We have presented a method for constructing a polynomial surrogate response surface for the
outputs of a network coupled multiphysics system that exploits its structure to increase efficiency.
We reduce the full system with a nonlinear elimination method, which results in a smaller system
to solve for the coupling terms that depends on the uncertain inputs represented as parameters. We
then apply a stochastic Galerkin procedure with a Newton iteration to compute the coefficients of
a surrogate response surface that approximates the coupling terms as a polynomial of the input
parameters. The residual and Jacobian matrix in the Newton update can be viewed as composite
functions: these terms depend on the coupling terms which depend on the uncertain inputs. We
take advantage of this composite structure to build a reduced polynomial basis that depend on the
coupling terms as intermediate variables. We use this reduced basis to find a modified quadrature
rule with relatively few nonzero weights. Each weight equal to zero corresponds to a PDE solve that
can be ignored when solving the Newton system. This results in substantial computational savings,
which we demonstrated on a simple model of a nuclear reactor.

The method is appropriate when the number of input parameters to the full system is small enough
to work with a tensor product quadrature grid. Even though we only evaluate the relatively cheap
coupling terms at the full grid to construct the modified quadrature rule, we still have an exponential
increase in the number of points in the grid as the dimension of the input space increases; a
cheap function evaluated 1010 times can still be expensive. This can be alleviated to some extent
by standard methods for sensitivity analysis and anisotropic approximation. In principle, sparse
grids could also be used in the method by relaxing the non-negativity constraint in the linear
program (41), but one must take great care when using sparse grids in conjunction with integration
for pseudospectral approximation to maintain discrete orthogonality [26], as well as insuring
positive definiteness of the inner products implicit in the QR factorizations (35) and (40). This last
difficulty could be alleviated for computing the reduced basis by projecting the monomial matrix
Y (34) onto the original polynomial basis {ψi}, and thus (35) becomes a standard (unweighted) QR
factorization. However one must still choose a sparse grid when defining the modified quadrature
rule that has degree of exactness at least 2N ′ for (40). Alternatively, in the spirit of [26], one could
incorporate this into a Smolyak sparse grid approach by applying the reduced basis and quadrature
techniques to each tensor grid appearing in the Smolyak expansion.
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Reactor time for reduced approach roughly constant with regards to number of 
uncertain variables in pipe 

Polynomial order N = N’ = 3 



Concluding Remarks 
•  UQ problems for multi-physics systems quickly become intractable 

–  Adding more components/physics increases stochastic dimensionality in all components 

•  Ideas studied here appear to help mitigate this 
–  UQ cost in each sub-problem approximately constant 
–  Rigorous error analysis is needed 

•  Building method on tensor-product quadrature (to ensure positive weights) limits 
scalability 

•  Ideas extend to e.g., sparse grids, but with challenges 
–  Non-positive weights lead to non-positive-definite inner product 
–  Can be mitigated by formulating basis reduction on PC coefficients instead of quadrature 

values 
•  Inner products become standard dot-products on PC coefficients 

–  Modify reduced quadrature linear program by removing positivity constraint 
•  Enables other solution approaches, e.g., column-pivoted QR 

–  Requires sparse grid to preserve discrete orthogonality 
•  Can this be extended to Smolyak PCE approaches? 

 
•  So far only investigated “segregated solve” type methods 

–  Can this be incorporated into full Newton or JFNK methods? 
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Auxiliary Slides 



•  Steady-state stochastic problem (for simplicity): 

•  Stochastic Galerkin method (Ghanem and many, many others…): 

–  Multivariate orthogonal basis of total order at most N – (generalized polynomial chaos) 
•  Method generates new coupled spatial-stochastic nonlinear problem (intrusive) 

 

•  Advantages: 
–  Many fewer stochastic degrees-of-freedom for comparable level of accuracy 

•  Challenges: 
–  Computing SG residual and Jacobian entries in large-scale, production simulation codes 
–  Solving resulting systems of equations efficiently, particularly for nonlinear problems 
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Stokhos:  Trilinos tools for embedded 
stochastic Galerkin UQ methods 

•  Eric Phipps, Chris Miller, Habib Najm, Bert Debusschere, Omar 
Knio 

•  Tools for describing SG discretization 
–  Stochastic bases, quadrature rules, etc… 

•  C++ operator overloading library for automatically evaluating SG 
residuals and Jacobians 

– Replace low-level scalar type with orthogonal polynomial expansions 
–  Leverages Trilinos Sacado automatic differentiation library 

•  Tools forming and solving SG linear systems 
–  SG matrix operators 
–  Stochastic preconditioners 
– Hooks to Trilinos parallel solvers and preconditioners 

•  Provides tools for investigating embedded UQ methods in large-
scale applications 

http://trilinos.sandia.gov  
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